
Demonstration of the Lorentz Transformation 

Hereby I will describe my own way to demonstrate the Lorentz Transformation. 

Consider that we now have two Cartesian frames, 𝑆(𝑥, 𝑦, 𝑧, 𝑡) and 𝑆′(𝑥′, 𝑦′, 𝑧′, 𝑡′), in which 

𝑆′ moves in the 𝑥-direction of 𝑆 with a uniform velocity 𝑣. Despite the motion, all of the 

three corresponding axes of 𝑆 and 𝑆′ remain parallel. We further assume that at time 𝑡 = 0, 

the two reference frames completely overlapped. 

Under the Lorentz Transformation, the speed of light is an invariant between different 

inertial reference frames. We hereby set off with this rule in mind. 

Suppose that a spherical wave of light is emitted at time 𝑡 = 0. We should have the 

following two equations 

𝑥2 + 𝑦2 + 𝑧2 = 𝑐2𝑡2       (1) 

𝑥′2 + 𝑦′2 + 𝑧′2 = 𝑐2𝑡′2       (2) 

 

There is no relative motion within the two-dimensional space of 𝑂 − 𝑦𝑧 and 𝑂′ − 𝑦′𝑧′. In 

other words, these two spaces remain identical to each other. Hereby I venture to set the 

following relationships: 

𝑥′ = 𝑓(𝑥, 𝑡)       (3) 
𝑦′ = 𝑦 
𝑧′ = 𝑧 

𝑡′ = 𝑔(𝑥, 𝑡)        (4) 

 

On the other hand, we have another two differential equations: 

𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 = 𝑐2𝑑𝑡2      (5) 

𝑑𝑥′2 + 𝑑𝑦′2 + 𝑑𝑧′2 = 𝑐2𝑑𝑡′2      (6) 

 

From mathematics, we obtain 
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  Now take (7) and (8) into the differential equation (6): 
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  By comparison with (5), we yield 
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  Now we differentiate (1) and (2) simultaneously: 

𝑥𝑑𝑥 + 𝑦𝑑𝑦 + 𝑧𝑑𝑧 = 𝑐2𝑡𝑑𝑡      (10) 

𝑥′𝑑𝑥′ + 𝑦′𝑑𝑦′ + 𝑧′𝑑𝑧′ = 𝑐2𝑡′𝑑𝑡′     (11) 

 

  Again we substitute 𝑥′ and 𝑡′ in (10) with (7) and (8), later is subtracted by (9), we yield: 

 𝑥 − 𝑓
𝜕𝑓

𝜕𝑥
+ 𝑐2𝑔

𝜕𝑔

𝜕𝑥
 𝑑𝑥 =  𝑓

𝜕𝑓

𝜕𝑡
+ 𝑐2𝑡 − 𝑐2𝑔

𝜕𝑔

𝜕𝑡
 𝑑𝑡 

 

  Since 𝑥 is independent from 𝑡, immediately we obtain 
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  We partially differentiate these two relationships with 𝑥 and 𝑡 respectively. Notice that 

we have (9). Hence we yield: 
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  It will not be difficult to notice that the two relationships in (13) in fact are identical to each 

other. In other words, they appear symmetric. Now we proceed to partially differentiate the 

first equation with 𝑥 and the third one with 𝑡 in (9) respectively. We therefore obtain 
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  Now we assume 
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𝜕𝑞 2 ≠ 0 and  
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𝜕𝑞 2 ≠ 0, where 𝑞 stands for 𝑥 or 𝑡. Therefore, from (13) 

and (14) we can yield the following two relationships without any difficulty 
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  Each side of the first equation and of the second equation is simultaneously multiplied by 

𝑑𝑥 and 𝑑𝑡, respectively, which later is summed together. We obtain 
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or,  

𝑔𝑑𝑓 = 𝑓𝑑𝑔       (16) 

 

  From (16) we obtain that 𝑓 is proportional to 𝑔. The ratio, which is a non-zero constant, is 

denoted by 𝑘, namely, 𝑓 = 𝑘𝑔 If the assumption, 
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𝜕𝑞 2 ≠ 0 and  
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should be able to solve 𝑘 perfectly. However, this is unfortunately not the case, as we apply 

the relationship of 𝑓 = 𝑘𝑔 into (9), and find that there are more than on errors with the 

assumption: 
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  However the ratio 𝑘 should be, 
𝜕𝑔

𝜕𝑡
 is a constant, independent from variants 𝑥 and 𝑡. 

Under such circumstance, 
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𝜕𝑡2 = 0 stands clearly, which is evidently contradictory to the 

assumption. Therefore, the assumption is flawed. By completely the same manner, instead, 

we must have 
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linear. Things become much easier. We assume four coefficients for 𝑥′ and 𝑡′: 



 
𝑥′ = 𝛼𝑥 + 𝛽𝑡

𝑡′ = 𝛾𝑥 + 𝛿𝑡
        (18) 

 

  According to (9), we easily yield 
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  Notice that 𝑥 = 𝑣𝑡 actually describes the motion of the origin point of the reference frame 

𝑆′. Hence we ought to have another relationship 0 = 𝛼𝑣𝑡 +  𝛽𝑡, namely, 𝛼𝑣 = −𝛽. With the 

four equations, the four coefficients can be solved as follows 
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  Finally, the Lorentz Transformation between coordinates in 𝑆 and 𝑆′ is given by 
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  We manage to observe that the Galilean Transformation is in fact an approximation in 

condition that 
𝑣

𝑐
≪ 1 is valid. For circumstances in which 

𝑣

𝑐
≪ 1 does not stand, the Lorentz 

Transformation should be applied. 
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